Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 5): 127179, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802457

RESUMO

Bacillus amyloliquefaciens LB1ba02 is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. However, autolysis affects the growth of bacteria, further affecting the yield of target products. Besides, the restriction-modification system, existed in B. amyloliquefaciens LB1ba02, results in a low transformation efficiency, which further leads to a lack of high-throughput screening tools. Here, we constructed a genome-wide crRNA inhibition library based on the CRISPR/dCpf1 system and high-throughput screening of related genes affecting the cell growth and autolysis using flow cytometry in B. amyloliquefaciens LB1ba02. The whole genome crRNA library was first validated for resistance to the toxic chemical 5-fluorouracil, and then used for validation of essential genes. In addition, seven gene loci (oppD, flil, tuaA, prmA, sigO, hslU, and GE03231) that affect the growth characteristics of LB1ba02 were screened. Among them, the Opp system had the greatest impact on growth. When the expression of operon oppA-oppB-oppC-oppD-oppF was inhibited, the cell growth difference was most significant. Inhibition of other sites could also promote rapid growth of bacteria to varying degrees; however, inhibition of GE03231 site accelerated cell autolysis. Therefore, the whole genome crRNA inhibition library is well suited for B. amyloliquefaciens LB1ba02 and can be further applied to high-throughput mining of other functional genes.


Assuntos
Bacillus amyloliquefaciens , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ensaios de Triagem em Larga Escala , Óperon
2.
Microbiol Res ; 263: 127131, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35868259

RESUMO

Bacillus amyloliquefaciens LB1ba02 is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. However, the restriction-modification system, existed in B. amyloliquefaciens LB1ba02, results in a low transformation efficiency, which makes its CRISPR tool development lagging far behind other Bacillus species. Here, we adapted a nuclease-deficient mutant dCpf1 (D917A) of Cpf1 and developed a CRISPR/dCpf1 assisted multiplex gene regulation system for the first time in B. amyloliquefaciens LB1ba02. A 73.9-fold inhibition efficiency and an optimal 1.8-fold activation effect at the - 327 bp site upstream of the TSS were observed in this system. In addition, this system achieved the simultaneous activation of the expression of three genes (secE, secDF, and prsA) by designing a crRNA array. On this basis, we constructed a crRNA activation library for the proteins involved in the Sec pathway, and screened 7 proteins that could promote the secretion of extracellular proteins. Among them, the most significant effect was observed when the expression of molecular motor transporter SecA was activated. Not only that, we constructed crRNA arrays to activate the expression of two or three proteins in combination. The results showed that the secretion efficiency of fluorescent protein GFP was further increased and an optimal 9.8-fold effect was observed when SecA and CsaA were simultaneously activated in shake flask fermentation. Therefore, the CRISPR/dCpf1-ω transcription regulation system can be applied well in a restriction-modification system strain and this system provides another CRISPR-based regulation tool for researchers who are committed to the development of genetic engineering and metabolic circuits in B. amyloliquefaciens.


Assuntos
Bacillus amyloliquefaciens , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enzimas de Restrição-Modificação do DNA/metabolismo , Engenharia Genética , Proteínas de Membrana Transportadoras/genética
3.
Microb Cell Fact ; 21(1): 99, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643496

RESUMO

BACKGROUND: Bacillus amyloliquefaciens is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. B.amyloliquefaciens LB1ba02 is a production strain suitable for secreting mesophilic α-amylase in the industry. Nevertheless, due to the low transformation efficiency and restriction-modification system, the development of its CRISPR tool lags far behind other species and strains from the genus Bacillus. This work was undertaken to develop a fast and efficient gene-editing tool in B.amyloliquefaciens LB1ba02. RESULTS: In this study, we fused the nuclease-deficient mutant Cas9n (D10A) of Cas9 with activation-induced cytidine deaminase (AID) and developed a fast and efficient base editing system for the first time in B. amyloliquefaciens LB1ba02. The system was verified by inactivating the pyrF gene coding orotidine 5'-phosphate decarboxylase and the mutant could grow normally on M9 medium supplemented with 5-fluoroorotic acid (5-FOA) and uridine (U). Our base editing system has a 6nt editing window consisting of an all-in-one temperature-sensitive plasmid that facilitates multiple rounds of genome engineering in B. amyloliquefaciens LB1ba02. The total editing efficiency of this method reached 100% and it achieved simultaneous editing of three loci with an efficiency of 53.3%. In addition, based on the base editing CRISPR/Cas9n-AID system, we also developed a single plasmid CRISPR/Cas9n system suitable for rapid gene knockout and integration. The knockout efficiency for a single gene reached 93%. Finally, we generated 4 genes (aprE, nprE, wprA, and bamHIR) mutant strain, LB1ba02△4. The mutant strain secreted 1.25-fold more α-amylase into the medium than the wild-type strain. CONCLUSIONS: The CRISPR/Cas9n-AID and CRISPR/Cas9n systems developed in this work proved to be a fast and efficient genetic manipulation tool in a restriction-modification system and poorly transformable strain.


Assuntos
Bacillus amyloliquefaciens , Sistemas CRISPR-Cas , Bacillus amyloliquefaciens/genética , Enzimas de Restrição-Modificação do DNA/genética , Edição de Genes/métodos , alfa-Amilases/genética
4.
World J Microbiol Biotechnol ; 35(8): 122, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31346836

RESUMO

To promote enzymatic unhairing for leather production, a new unhairing enzyme is developed. The Keratinase (kerT) gene, which is amplified from B. amyloliquefaciens TCCC11319 by PCR, is expressed in B. subtilis WB600. The recombinant KerT reduces the collagenolytic protease content as well as improving the keratinase content effectively. Therefore, the improved keratinase leads to the obviously unhairing effect, whereas the low collagenolytic protease ensures the integrity of collagen fibers in hide. It represents, the leather grain surface isn't destroyed thereby the value of finished leather can be maintained. In addition, by analyzing the properties of KerT, tits activity isn't inhibited with Na+, K+ and Ca2+ which are commonly used in leather production. The freeze-dried fermentation broth can be used directly as unhairing enzyme without addition of traditional sulfide chemicals. By evaluating the properties of unhaired hide, the results show that the collagen degradation ability of this new unhairing enzyme is slightly and it does not cause any adverse effects on the leather quality. Besides, this unhairing enzyme doesn't further degrade collagen in the time range of 8 h to 24 h, thus it is safely and easy-control in actual production. In conclusion, the enzymatic unhairing method with recombinant KerT has the potential to be more sustainable and efficient alternative than current sulphur-lime method, and it does not require the further purification thereby saving the cost.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , DNA Bacteriano/isolamento & purificação , Peptídeo Hidrolases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Fragmentação do DNA , DNA Bacteriano/genética , Fermentação , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Peptídeo Hidrolases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...